

Objective

Modernized the in-house plan and benefit management system from legacy code to improve the handling of clients, members, and claims while enhancing system performance and usability.

CASE STUDY

Scope

- Develop microservices-based applications for plan, client, eligibility, and claims management.
- Introduce hierarchical UI for member classification.
- Replace complex Excel-based plan management with integrated UI.
- Implement a multi-threaded claims processing engine for performance.

Solution

- Adopted microservices architecture for scalability and maintenance ease.
- Designed novel UI for intuitive member classification using tree and grid structures.
- Replaced Excel-based plan management with streamlined UI.
- Improved claims processing with multi-threading for speed.

Value Added

- Modernized Plan Management with a user-friendly interface.
- Improved data structuring for consistency and efficiency.
- Leveraged modern tech for faster delivery and scalability.
- Enhanced user efficiency and satisfaction.
- Improved system performance for a smoother experience.

Frameworks & Tools

Redux

Selenium Webdriver

Microsoft®
SQL Server®

JPA
Java Persistence API

React JS

Objective

To build and deploy multiple applications as microservices in a Docker-based environment over VMware ESXi, focusing on infrastructure automation, application monitoring, and the introduction of DevOps practices

CASE STUDY

Scope

- Assess requirements and provide architectural design for a Docker-based microservices environment.
- Automate infrastructure and application deployment processes, incorporating custom auto-versioning and application monitoring.

Value Added

- Implemented DevOps practices to boost operational agility and deployment efficiency.
- Developed an environment dashboard for enhanced visibility and control of deployment phases and versions.
- Delivered a cloud-agnostic solution allowing flexibility across any ISP for future scalability.
- Achieved cost savings by transitioning from Windows to Linux servers, reducing licensing and operational expenses.
- Provided comprehensive training and handover to client teams for effective management and scaling of infrastructure.

Solution

- ✓ Created a Docker-based environment on VMware ESXi to host microservices, ensuring high scalability and efficiency.
- ✓ Built applications into Docker images, enhancing infrastructure automation.
- ✓ Implemented Bamboo jobs to automate the deployment process and manage multiple environments effectively.
- ✓ Established comprehensive application monitoring to ensure optimal performance and reliability.

Frameworks & Tools

Objective

The project aimed to fine-tune the client's data model and event streaming architecture to improve the efficiency and scalability of their systems.

CASE STUDY

Scope

- Address key challenges in data model design and event streaming architecture that were impacting the platform's performance and scalability.
- Provide expert guidance to overcome these hurdles and deliver a seamless solution.

Solution

- Collaborated closely with client's architecture team to fine-tune their MongoDB database model and optimize their RabbitMQ event streaming setup.
- Conducted a thorough analysis of client's existing data model and event streaming architecture to identify bottlenecks and inefficiencies.
- Implemented targeted optimizations based on best practices in database design and event-driven architecture to enhance performance, scalability, and reliability.

Value Added

- Provided expert guidance and support, enabling the client's architecture team to enhance their MongoDB database model and RabbitMQ event streaming setup.
- Through strategic modifications and optimizations, significantly improved the performance, scalability, and reliability of client's systems.
- Leveraged extensive expertise in database design and event-driven architecture to implement industry best practices, resulting in a robust architecture ready for future scaling.

Frameworks & Tools

Objective

To build an online platform that connects world-class US doctors with patients around the world, using technology in a secure and convenient way

CASE STUDY

Scope

- Implement B2C requirements for managing doctor and patient interactions.
- Conduct end-to-end development and implementation of the solution.
- Manage project planning and Agile execution.
- Ensure HIPAA compliance for patient reports and health data management.

Value Added

- New features like referrals and real-time chat were introduced to enhance patient and doctor interaction.
- Real-time note-taking capabilities during consultations were added to improve the platform's utility and efficiency
- An optimized solution for managing appointment calendars was developed to simplify scheduling and rescheduling.

Solution

- ✓ Developed a comprehensive B2C solution for patient and doctor onboarding, profile management, appointment management, and communication management.
- ✓ Designed, developed, and deployed the solution on AWS.
- ✓ Implemented data encryption and enhanced API security to protect sensitive health information.
- ✓ Integrated third-party services, including Stripe for payment processing and WebRTC for secure video calling.

Frameworks & Tools

Objective

To design, architect, implement, and automate a highly resilient and scalable CI/CD pipeline for AI-enabled products in the Healthcare domain with all compliance

CASE STUDY

Scope

- Comprehend the product architecture and document deployment steps.
- Identify suitable Amazon Web Services for deployment and migrate to the appropriate DevOps tools
- Design and implement a resilient CI/CD pipeline using the selected tools
- Provide secure web hosting solutions.
- Conduct training and handover to the client's team.

Solution

- ✓ Strategized code management with auto-versioning features.
- ✓ Built automated CI/CD pipeline orchestration using various Jenkins plugins.
- ✓ Developed custom scripts for automating the installation and configuration of the Django framework and service management using Supervisor.
- ✓ Maintained environment state and provisioned new environments using Saltstack.
- ✓ Delivered a clean handover with industry-standard documentation and extensive WebEx recordings.
- ✓ Created a customized environment monitoring dashboard with email notifications and alerts for transparent management oversight.

Value Added

- The CI/CD pipeline was aligned with healthcare compliance requirements to boost security and reliability.
- Automation of pipeline processes cut down on manual errors and sped up deployments
- A customized dashboard was implemented to give management real-time system status and alerts, improving decision-making

Frameworks & Tools

SALTSTACK

Jenkins

Objective

To build a PBM (Pharmacy Benefit Manager) Claim Adjudication System that would adjudicate the prescription claims submitted by pharmacies through pharmacy exchanges.

CASE STUDY

Scope

- Develop a rule engine to process claims and determine outcomes—either accepted or rejected, with reasons provided for rejections
- Design a messaging queue to manage the flow of claim messages in and out of the system
- Build a user interface for claims management.

Solution

- ✓ Implemented end-to-end solutions including automated deployment on AWS.
- ✓ Developed a cache implementation for performance management.
- ✓ Established CI/CD for DevOps automation. Created a messaging queue to manage the flow of claims messages.
- ✓ Designed a performance-intensive claims processing engine.
- ✓ Provided comparative analysis of frameworks and tools for the rules engine to make informed technology decisions.
- ✓ Developed extensible APIs and designed the solution with a modular approach.

Value Added

- A claims processing engine was engineered to efficiently handle high volumes of data
- A comparative analysis was provided to select the optimal framework and tools for the rules engine.
- System architecture flexibility was enabled through API exposure, facilitating future integrations and expansions
- Scalability and maintainability were ensured with a modular design approach.

Frameworks & Tools

redis

mongoDB

UNIX®
An Open Group Standard

Java

MariaDB

Microsoft Azure

Objective

The objective of the project was to deliver a computer vision-driven solution for safety compliance, healthcare monitoring, and industrial inspections using smart glasses. It brought AI-powered video analysis directly to the field through the integration of wearable and mobile technologies.

CASE STUDY

Scope

- Detects essential PPE gear, including helmets, masks, gloves, and safety vests.
- Analyses posture and movement patterns to identify indicators such as discomfort or restlessness without relying on facial recognition.
- Enables hands-free vehicle and asset inspections through smart glasses.
- Supports both offline AI processing for safety-critical use cases and cloud-assisted workflows for deeper analysis.

Solution

- ✓ Vuzix smart glasses became the frontline companion, enabling hands-free video capture and real-time visualization without disrupting work.
- ✓ The mobile app, built with Kotlin and MVVM, acted as the brain managing devices, streams, AI inference, and secure data flow.
- ✓ AI models ran directly on the device using TensorFlow Lite, ensuring low latency and offline reliability.
- ✓ For deeper insights, such as emotion analysis and vehicle inspection, captured videos flowed to backend systems for frame-by-frame processing.
- ✓ A hybrid AI architecture balanced speed, accuracy, privacy, and scalability, adapting intelligently to each real-world use case.

Value Added

- Real-time decision making with low latency.
- Offline capability for safety-critical environments.
- Hands-free workflows improving operator efficiency.
- Privacy-friendly design (no facial recognition where not required).
- Scalable architecture adaptable across industries and use cases.
- Reduced manual effort and improved accuracy in compliance and inspection.
- Reusable framework enabling faster rollout of new AI use cases.

Frameworks & Tools

